

| DAY | HOURS | ACTIVITY | WHERE | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Thursday | 1.00 p.m. | RPSL Meeting: Group Display Deutscher Altbriefsammler-Verein | RESPONSIBILE | |
| $\mathbf{1 2 ~ O C T O B E R ~}$ | 7.00 p.m. | Dinner on Invitation by RPSL President Patrick Maselis | 41, Devonshire Place | |
| | | Formal Opening of the IAP Symposium and Activities | Restaurant Orrery | |
| DAY | HOURS | ACTIVITY | Restaurant Orrery | RPSL President |
| IAP President John Barwis FRPSL | | | | |

		Previous developments to determine the distortions in plate impressions using image differences relied on the analysis of large multiples of stamps. The inability to compare individual stamps from different sheets combined with the expense and scarcity of large multiples greatly limited this capability. This limitation of analysis to single sheets is primarily the result of large differences in the shrinkage of sheets of stamps after wet printing processes. Various approaches to compensate for size differences between individual stamps were incorporated into the image subtraction methods for evaluation. These included approaches for proportional scaling and bilinear mappings between four-sided shapes. It was possible to obtain comparable or better results than the previous, same-sheet method using the bilinear modifications, but now comparing single stamps. This method can be used to group single stamps from unknown plates and positions based on small differences in the distortions of their plate impressions. This was demonstrated with a large set of similar stamps having weak re-entry features. This additional information was used to re-examine and revise stamp groupings based on comparisons of both visual features and differences in plate impressions.		
	12.00 p.m.	Lunch Break		
	1.00 p.m.	Forensic Philately in 2020 ~ Challenges \& Opportunities'	Large Meeting Room	Paul Leonard
		The expertising of philatelic items is aided by reference material, personal knowledge and as appropriate, the use of science - based evidence. Such approaches can include forensic analysis of stamps that may include established methods such as the use of ultra-violet light, determination of watermarks and perforations as well as magnification of the image, typically 10 times to determine e.g. printing flaws. More specialised equipment may be needed when philatelic items are of potential national or international importance, especially when reassurance is sought that the item is genuine. Such equipment needs to provide non- destructive and auditable results. The aim of this approach is to build up a breadth and depth of knowledge to support a concluding opinion. Microscopic examination can include scanning and 3D microscopes. Analysis can include e-based initiatives such as 'Retro - Reveal' www. http://retroreveal.org where colours, cancellations and overprints may be assessed. A video spectrometer comparator, http://www.fosterfreeman.com, can be helpful to determine fraudulent manipulation. Further equipment may be required for elemental analysis, e.g. by X-ray fluorescent (XRF) analysers and / or Raman spectrometry. There remain many challenges that could be helped with further science - based evidence on a wide range of philatelic issues. This may include e.g. detection of colour differences, identification of watermarks of stamps attached to documents and assessment of organic contaminants, as well as paper and adhesive analysis. This may be aided by better engagement with academic institutions and equipment manufacturers on an international basis. The exchange of material between philatelic specialists and expertising committees may aid the transparency of the opinion making process.		
	1.50 p.m.	Break		
	2.00 p	The Use of Tonal Histograms for the Study of Stamp Shades	Large Meeting Room	Tim Lyerla
		According to the Miche ${ }^{\oplus}$ Germany Specialized catalog, there are 11 different shades of the 10 Pfennig value for the 1899 "crown and eagle" issue of the German Empire recognizable under UV illumination. Distinguishing this number of different shades presents a daunting task for the average collector. The goal of this study is to find a way to objectively determine this quality using readily available and relatively inexpensive methods. Digital photography provides a rationale for this purpose, although it requires some outlay of capital and practice with its use. The technology involves the accompaniment of tonal histograms that are used by the photographer to adjust the shades for the resulting pictures. A simple logical reversal of the process is the determination of the shade of a photo from its tonal histogram. A sub-group of shades of the 10 Pfennig value, the " d " group, serves as a test of this hypothesis. A Panasonic ${ }^{\text {TM }}$ DMC- G5 Lumix digital single lens reflex camera and Adobe ${ }^{\oplus}$ Photoshop ${ }^{\circledR}$ Elements 12 software were used for this study. The camera was equipped with a 100 mm Canon telephoto lens, a Kenko 52 mm UV filter cover lens, and an automatic shutter release. Shutter speed and sensitivity were set at Aperture Mode (automatic) using f11 for focus. A pair of UVP® UV-L ultraviolet lamps was placed for maximum illumination onto the items, and intensity kept constant with the use of a portable spectrophotometer calibrated at 365 nm . Pictures were taken as RAW files at 6000 to 10,000 oK color temperature, and compression to JPEG files done on Photoshop ${ }^{\oplus}$ Elements for the production of tonal histograms. The results show that the three more common shades listed as the "d" types-Michel ${ }^{\oplus}$ numbers 47 (red shades in UV), 47 da (dark red in UV), and $47 d b$ (pale vermilion in UV) which can be difficult to distinguish with confidence by eye, possess tonal histograms that allow this distinction both qualitatively and quantitatively. In addition, three of the stamps used for this investigation show small regions that exhibit one of the other these shades, indicating that some common components of the dyes or inks were likely involved in the production of these "d"shade types.		
	2.50 p.m.	Break		
	3.00 p.m.	Non-destructive Analyses: Creating Standards for Imperial Brazilian Stamps from a Case Study of Cottens Essays	Large Meeting Room	Fernando M. Santos

		The purpose of this study was to lay the groundwork for analyses of the Imperial Brazilian postal stamps via a case study of the Cottens Essays. The Dom Pedro II white-beard Brazilian postal essays were not issued and became known as "Cottens essays". The stamps might have been issued should the Empire have continued and had the Republic not been proclaimed in 1889. These essays have a nebulous history replete with myths about their origin. Their history was elucidated by means of comparison of these essays with Imperial Brazilian stamps, issued in the period by "Casa da Moeda do Brasil" - the Brazilian Mint. Further insights were gained by comparisons to U.S. stamps (most of the Imperial Brazilian postal stamps were made by the American and Continental Bank Note Companies), and to French stamps (considering myths of a possible French origin). Non-destructive analytical methods were used to create a database of chemical and physical characteristics of inks and papers of the relevant Brazilian, American and French stamps. Xray fluorescence (XRF) was done using an Amptek ${ }^{\oplus}$ X-ray tube with Silver filament (voltage 30 kV , current of 10 İA and 200 seconds), with a Si-Drift detector also from Amptek ${ }^{\circledR}$. We also used an National Electronic Corporation electrostatic Pelletron-tandem particle accelerator type 5SDH with a gaseous stripper (N2) for beam-load exchange integrated with a external multiuse analyses station. This allowed analyses in air by characteristic X-ray spectroscopy (PIXE). These techniques allowed the identification and quantification of chemical elements in different materials, identifying residual metals present in the sample. The optical microscope was used to identify the paper fibers. With these studies, differences were observed in the proportions of the chemical elements present in Brazilian stamps, issued by Brazilian Mint, ABN Co. and Continental Bank Note Co., and French stamps, but also differences in the elements used in its composition, as well as physical differences in the papers and manufacturing process.		
	3.50 p.m.	Break		
	4.00 p.m.	Symposium Brainstorming: Panel facilitators with the Symposium open for discussion	Large Meeting Room	Christopher G. Harman Ted Nixon Larry Lyons
		What do those who expertise philatelic materials think is missing from their technical tool boxes? How could we better facilitate the use of technology by collectors who want to know more about	materials?	
	4.50 p.m	Symposium to be adjourned until Sunday	Large Meeting Room	Christopher G. Harman
	5.00 p.m.	Wine and Nibbles	Large Library	
		Evening free - no specific arrangements		
DAY	HOURS	ACTIVITY	WHERE	RESPONSIBILE
Sunday				
15 OCTOBER	09.00 a.m.	Symposium Proceedings	41, Devonshire Place	Christopher G. Harman
		U.S. 24¢ Purple: Progress Report on a Philatelic Enigma	Large Library	John Barwis \& Harry Brittain
		The twenty-four-cent purple stamps printed by the Continental Bank Note Company (Scott 164) ca printing plate created by the National Bank Note Company, printer of the 1870 issue. Only one 24 Continental, an opinion based solely on the basis of its having been printed on ribbed paper - on whir This study seeks to discriminate between National and Continental 24¢ stamps by identifying ch (XRF) and Fourier-transform infrared (FTIR) spectroscopic analysis. Seven dated covers were exam had been established. The FTIR spectra of the studied stamps indicated that one of the coloring agents in the ink was utra (probably carmine). The amount of ultramarine in the FTIR served to differentiate the stamp into XRF enabled a further differentiation of the stamps into three discrete classes based on the relativ the compound containing phosphorus, we note that all the high ultramarine stamps contain medium	tified based solely on th been certified by The Phil ional Bank Note Compan ences in the printing inks as 24 stamps bearing N and so the purple color w ies, which will be denoted of phosphorus (high, me phosphorus. Work is still	design, since Continental used a single, unaltered elic Foundation as having been printed by tamp has ever been observed. sed by the two companies, using X-ray fluorescence York foreign-mail cancels, for which usage ranges attained through the addition of a red pigment low and high ultramarine. Elemental analyses by um or low). Although we have not yet identified progress.
09.00 a.m.	09.50 a.m.	Coffee Break	Large Library	
3.00 p.m.	10.10 a.m.	Chemistry of Aniline inks, 2-cent Admiral Issues of Canada	Large Meeting Room	Richard Judge

	The 2-cent carmine Admiral issue of Canada had a long production period that overlapped the First World War. This investigation documents the changes in ink formulations that resulted from the unavailability of key ingredients during the war and the subsequent shade variations and a production flaw. The major challenge of correlating any changes in ink chemistry with the extensive production time frame from late 1911 to late 1920 was achieved by analyzing a substantial fraction of plate blocks from the 188 plates of that period, all of known approval dates. Shade variations were investigated from the reflectance spectra of unused plate blocks of both regular and war-tax stamps. The variation in elemental composition of the inks was studied using X-ray Fluorescence (XRF) spectroscopy. The change in molecular or ionic compounds within the ink was followed using Attenuated Total Reflectance Fourier Transform Infrared (ATRFTIR) spectroscopy. Analysis of the reflectance spectra shows a partitioning of the reflectance curves into two main types and correlates with the change of shade from pre-war rose carmine to post-war carmine. The war years represented the transition period and gave rise to several shade variations of which the aniline ink pink shade is the most striking. XRF analysis shows that the element Zn disappears just before the start of the war and never substantially returns. The other major change is the appearance, only during the war, of Cr but at concentrations that are quite variable. Analysis of ATR-FTIR spectra has shown that the use of the common printing ink vehicle, linseed oil, (a mixture of the triglycerides of oleic, linolic, and linolenic acids) disappears at the start of WW1. Additional changes in the ATR-FTIR spectra parallel that seen in the reflectance spectra, namely changes over the three time periods of pre, during and post- WWI. However, the actual compounds in flux are not identified in this study only the appearance and disappearance of spectral features are documented. A discussion of the steps used in formulating an ink, as gleaned from the literature of the early 1900 's, is presented and focuses on the appearance of various elements and compounds in each step of the ink making process. The paper also focuses on the aniline ink variety, i.e. stamps that show significant bleed through of the ink to the gum side of the stamp. It is shown that a pre-WWI aniline ink plate block has no discernable spectral differences from normal stamps of similar or identical plates numbers. However, the aniline ink stamps produced during the war show major differences in Cr levels and are lower than normal stamps of that period. Visually, the bleed through of the WW1 aniline ink stamps is approximately inversely proportional to the Cr level. The primary conclusion from this paper is that the major changes in ink formulations necessitated by WWI shortages resulted in production difficulties that gave rise to the aniline ink variety and the aniline pink shade. It is uncertain if the absence of Cr in this bleed through variety is due to the inability to properly fix the dye into a pigment early in the process or whether Cr compounds become unavailable during the later part of the ink making process and their absence caused the bleed through.		
11.0	Bre		
11.10 a.m.	The Colors of the Germany Crown and Eagle Series	rge Meeting Room	John Cibulski
	The Germany Crown and Eagle series of 1889-1900 contains stamps with color varieties that are notor commonly only distinguished by their uv characteristics. Some reliance is also placed on their dates of cancer carefully analyzing the colors of the stamps and grouping them based entirely upon their visible colors. interpretation. To this end I obtained approximately 5000 copies of the stamps in this series. Most of th after scanning and before analysis. New techniques and software capabilities were needed to be develo Several changes in the existing software were needed in order to increase the precision of the color deter study proceeds I am still adding improvements to the programs. To add confusion to this story, Scott, Gibbons and Michel all define different "color" varieties for these misplaced. As an example, with regards to the "red" 10 pf stamps in the series, almost all of them match color varieties mentioned by Gibbons are "rose-carmine" and "carmine". Similar issues prevail with the guide as had already been performed for the Michel Color Guide. In order to begin to make sense of this produced a cross-listing of the two color guides based on their best electronic matches.	difficult to distinguish. tion. It is the goal of this ping that in this way on canceled and needed to order to make the proce ion and decrease the sen s and produce their own lectronically closest in co Color Guide. This led to thing a comparison of t	he current time many of the varieties are tudy to add some light to their characterization by could avoid the need for subjective uv have their cancellations (electronically) removed ing of this large number of stamps feasible. ivity to the cancellation removal process. As the lor guides. Reliance on these color guides is r) to the Gibbons "Venetian Red" whereas the two investigation and digitization of the Gibbons color se two color guides was performed. I also
12.00 p.m.	Lunch Break		
	Using the Bruker XRF to distinguish the six different printings of the U.S. Newspaper Stamp Design N4	ge Meeting Room	Larry Lyons

		The N4 Newspaper stamp design which depicts the Statue of Freedom on the Capital Dome was used at different times and by different printing companies to print stamps used to pay a tax on newspapers and periodicals. The six printings using the N4 design took place as follows: 1. January 1, 1875 by the Continental Bank Note Co. 2. A Special Printing of 1875 by the Continental Bank Note Co. 3. An 1879 printing by the American Bank Note Co. 4. A Special printing of the 1879 issue printed in 1883 by the American Bank Note Co. 5. A July 1, 1885 printing by the American Bank Note Co. 6. An 1894 printing by the Bureau of Engraving and Printing The values under ten cents were produced in black and the values from 12 cents to 96 cents were done in shades of red, all using the same design. All of the printed stamps are perforate 12. The difficult question which has baffled advanced philatelists for over a century is how to tell the different printings apart. The purpose of this paper is to show that the different printings can be distinguished from each other by using X-ray Fluorescence. The challenge to telling these stamps apart is increased by the fact that the types of paper on which the various stamps were printed can differ within the same printing. The various shades of color can also differ. The conclusion is that the physical examination of the paper types and ink colors are unreliable or of limited or no use in helping to distinguish the stamps from the six various printings from each other. The Bruker XRF tells us the elements present in the ink of each of the printings and an analysis of the results of testing all of the various printings conclusively provides a means of telling the printings apart from each other. The same spot on each stamp was tested and examples were chosen without cancellations in the test area to avoid corrupting the data. Also all of the stamps tested were off cover examples with clean backs, again to avoid corrupting of the data. The focus is on the quantitative values of the metals contained in the inks or the absence thereof. The comparison is made by looking at iron, nickel, copper, zinc, lead, and magnesium in the various ink compositions. The inks used by the different printing companies and at different periods of time contained some of the same elements but the proportions differed widely between the different printings. It was also found that certain elements were absent in some of the printings. A starting point was with values only printed at a certain date and not at any other time. Trends emerged by testing lower value stamps and these were verified in high value stamps of the same printings. The critical data results were clearly conclusive and have become the means of identification for these enormously difficult stamps to identify.		
	1.50 p.m.	Break		
	2.00 p.m.	Exploring Color Mysteries in the U.S. Large and Small Numeral Postage Due Stamps Using X-ray Fluorescence Spectrometry	Large Meeting Room	Harry K. Charles
		The United States large and small numeral postage due stamps were produced in at least 19 co and stamp misidentifications over the ensuing years. X-ray fluorescence spectroscopy (XFR) cou distinguish stamps and explain various postage due color mysteries. Color timelines were devel Postage due stamps, with a common large numeral vignette, were produced by the American J1 to J7) was issued in a brown color rather than the specified red-brown. The next series (Scott 1884, but stamps with distinctly reddish tones began appearing years earlier on cover. In 1891, orange fluorescence under ultraviolet illumination (long wavelength). In 1894, the color situation was further complicated, as the Bureau of Engraving and Printing due stamps (making them smaller and more easily produced while retaining the central numeral claret (Scott J31 to J37). As the BEP took over, some postage due denominations were in short sur ramp up production. This pressure coupled with poor quality control and inadequate pigment star fluorescence. Ultraviolet fluorescence observations and elemental ink spectra have been collected from var and proofs. The results indicate marked differences between elemental ink compositions of fluo color and has long been regarded as a plate proof of the J32 claret postage due stamp, despite color stamp. The J32P4 card proof and the J30 vermilion stamp both fluoresce and the XFR elem which probably account for its darker color; although J30 is known in a dark vermilion. The spectra J30 on cover in July of 1894 further confirms that the J32P4 and the J30 vermilion stamps are lin As another example, it appears that the high value ($10 ¢, 30 ¢$, and $50 ¢$) Roosevelt proofs (1903) indicating that the high value stamps were issued months later. X-ray analysis has shown there elemental peaks are present in both proofs, the low values have significantly more Pb (factor of different ink composition. The $10 ¢$ stamp was printed on the same day as its $1 ¢$ and $3 ¢$ counter and $5 ¢$ counterparts. Thus, it appears that the change in ink was purposeful and not due to ran	shades and sub-shades, UV fluorescence was us covers. pany from 1879 through produced in shades of re cott J22 to J28) was issued the production of all Unit e the small numeral nom ost Office Department pr mixing facilities gave rise ral and small numeral p -fluorescent stamps. For proof has plate no. 34. a are essentially identical claret stamps are distinctly ostage due series are a s fference between the ink cantly less Fe and Ca tha $30 ¢$, and 50% stamps wer	his range of colors led to many color anomalies to examine these color differences and thus 893, in three distinct series. The 1879 series (Scott brown. The red-browns were officially issued in in bright claret and is easily identified by its d States stamps. The BEP redesigned the postage nclature) and the color was changed from red to ssured the BEP to complete the new designs and many additional anomalies in stamp color and tage due stamps (mint and used on cover), essays, xample, the J32P4 plate proof on card is claret in ate no. 34 is only associated with the J30 vermilion The J32P4 has somewhat larger Fe and Pb peaks different (containing extremely large Ca peaks). A htly different color than the lower values, the high and low values. While the same 10 their high value counterparts, thus indicating a printed on the following day along with their $2 ¢$
	2.50 p.m.	Symposium to be closed	Large Meeting Room	Christopher G. Harman and John Barwis
	3.00 p.m.	End		

