Appendix 1
Two Decompositions of $\mathbf{3 2}$ Copies of Mi 37

1. Mi 37 Maximal Clique Decomposition for ASUML at $\mathbf{0 . 8 8}$ Cutoff

ASUML Clique Plot Mi 37 Canon 1-32 Cutoff 0.8800

[1] Largest Maximal Clique: (6 stamps) H,S,L $=0.9766,0.2271,0.5078$:

[2] Maximal Clique: $(5$ stamps) $\mathrm{H}, \mathrm{S}, \mathrm{L}=0.9841,0.2530,0.4882$:

[3] Maximal Clique: (4 stamps) H,S,L $=0.9806,0.1830,0.5392$:

[4] Maximal Clique: (3 stamps) H,S,L $=0.9894,0.2070,0.5549$:

[5] Maximal Clique: (2 stamps) H,S,L $=0.9630,0.2851,0.4333$:

[6] Maximal Clique: (2 stamps) H,S,L $=0.9962,0.2366,0.6353$:

[7] Maximal Clique: (2 stamps) $\mathrm{H}, \mathrm{S}, \mathrm{L}=0.9898,0.2000,0.4804$:

Singletons (Cliques 8 thru 15) with only one stamp in order as produced:
H,S,L $=0.9479,0.1322,0.4745$
H,S,L $=0.9550,0.1689,0.5706$
H,S,L $=0.9651,0.1894,0.5549$
H,S,L $=0.9956,0.1696,0.5608$
H,S,L $=0.0044,0.3086,0.4765$
H,S,L $=0.9750,0.1681,0.5333$
H,S,L $=0.9737,0.2511,0.5549$
H,S,L $=0.9944,0.2500,0.5294$

2. Mi 37 K-Means Decomposition for ASUML with $K=15$

Note: Not all edges are shown in this graph.
[2] Cluster: (2 stamps) $\mathrm{H}, \mathrm{S}, \mathrm{L}=0.9963,0.2486,0.6451$:

[3] Cluster: (4 stamps) H,S,L $=0.9746,0.1917,0.5294$:

[4] Cluster: (2 stamps) H,S,L $=0.9635,0.2936,0.4275$:

[5] Cluster: (8 stamps) H,S,L $=0.9828,0.2302,0.5059$:

[11] Cluster: (2 stamps) H,S,L $=0.9924,0.2095,0.5882$:

[12] Cluster: (4 stamps) H,S,L $=0.9855,0.2706,0.5000$:

[15] Cluster: (2 stamps) H,S,L $=0.9843,0.2129,0.4882$:

Singletons (Clusters $1,6,7,8,9,10,13,14)$ with only one stamp in order as produced:
H,S,L = 0.9479, 0.1322, 0.4745
$H, S, L=0.9550,0.1689,0.5706$
H,S,L $=0.0044,0.3086,0.4765$
H,S,L $=0.9651,0.1894,0.5549$
H,S,L $=0.9737,0.2511,0.5549$
H,S,L $=0.9750,0.1681,0.5333$
H,S,L $=0.9956,0.1696,0.5608$
H,S,L $=0.9944,0.2500,0.5294$

Of course you noticed immediately that this is exactly the same set of singletons as was produced by the Maximal Clique Decomposition.

